Kinematics and end-point control of arm movements are modified by unexpected changes in viscous loading.
نویسنده
چکیده
These experiments were undertaken to evaluate whether the kinematics and end-point control of learned movements were affected by changes in dynamic loads or were determined largely by centrally specified motor programs. Human subjects performed flexion movements about the wrist in a discrete visual tracking task for a range of movement sizes. For some movements, viscosity was increased at movement onset. When the viscous load opposed movement unexpectedly, subjects initially overshot the intended target for all movement sizes, but only for the smaller movements did the overshoot persist. Unexpected introduction of heavier loads was more effective in inducing these behavioral changes; the lightest loads did not alter end-point positioning. When subjects had visual guidance about performance when load changes occurred, the effect of the unexpected occurrences of viscous loads was diminished, suggesting that subjects rapidly adjusted their movement strategy, depending on task demands and performance. The movement responses were mediated by short-latency and long-duration muscle responses triggered by the change in viscous loading. Although the triggered muscle responses were larger when the loads were encountered during performance of large, in comparison to small, movements, smaller muscle responses affected small movements more than large triggered responses did large movements. This suggests that triggered muscle responses are compensatory in certain movement situations but disruptive in others. In addition, these findings demonstrated that dynamic loads especially affect the kinematics and end-point control of smaller movements, suggesting that kinesthetic inputs and central motor commands interact so subjects may achieve accurate positioning for certain classes of movements.
منابع مشابه
Sensorimotor adaptation of point-to-point arm movements after spaceflight: the role of internal representation of gravity force in trajectory planning.
After an exposure to weightlessness, the central nervous system operates under new dynamic and sensory contexts. To find optimal solutions for rapid adaptation, cosmonauts have to decide whether parameters from the world or their body have changed and to estimate their properties. Here, we investigated sensorimotor adaptation after a spaceflight of 10 days. Five cosmonauts performed forward poi...
متن کاملExperimental Study and Three-Dimensional Numerical Flow Simulation in a Centrifugal Pump when Handling Viscous Fluids
In this paper the centrifugal pump performances are tested when handling water and viscous oils as Newtonian fluids. Also, this paper shows a numerical simulation of the three-dimensional fluid flow inside a centrifugal pump. For these numerical simulations the SIMPLEC algorithm is used for solving governing equations of incompressible viscous/turbulent flows through the pump. The k-ε turbulenc...
متن کاملAn LPV Approach to Sensor Fault Diagnosis of Robotic Arm
One of the major challenges in robotic arms is to diagnosis sensor fault. To address this challenge, this paper presents an LPV approach. Initially, the dynamics of a two-link manipulator is modelled with a polytopic linear parameter varying structure and then by using a descriptor system approach and a robust design of a suitable unknown input observer by means of pole placement method along w...
متن کاملCognitive Loading Affects Motor Awareness and Movement Kinematics but Not Locomotor Trajectories during Goal-Directed Walking in a Virtual Reality Environment
The primary purpose of this study was to investigate the effects of cognitive loading on movement kinematics and trajectory formation during goal-directed walking in a virtual reality (VR) environment. The secondary objective was to measure how participants corrected their trajectories for perturbed feedback and how participants' awareness of such perturbations changed under cognitive loading. ...
متن کاملInter-joint coupling strategy during adaptation to novel viscous loads in human arm movement.
When arm movements are perturbed by a load, how does the nervous system adjust control signals to reduce error? While it has been shown that the nervous system is capable of compensating for the effects of limb dynamics and external forces, the strategies used to adapt to novel loads are not well understood. We used a robotic exoskeleton [kinesiological instrument for normal and altered reachin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 6 11 شماره
صفحات -
تاریخ انتشار 1986